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The contribution to asymmetry from hQx terms can 
be calculated analytically from the coefficients 
obtained in step 1 using B-S analysis (§ 3.1). These 
coefficients are not affected in the present scheme of 
separating thermal and static components, f(q) can 
then be obtained from the experimentally observed 
asymmetry of diffuse scattering. In a similar manner 
f(q) and hence ITDS can be evaluated in different 
directions of reciprocal space. In this way the contri- 
bution from TDS can be obtained in a straightforward 
manner without actually computing mode fre- 
quencies using elastic constants. This method has the 
further advantage of yielding ITDS over a range of 
temperatures, and an additional knowledge regarding 
the temperature dependence of various physical 
parameters is no longer required. 

Once the contribution from TDS has been sub- 
tracted, the remaining diffuse intensity can be 
reanalysed using the method outlined in step 1 (§ 3.1). 
The coefficients thus obtained will have contributions 
only from static displacements. 

Concluding remarks 

Hayakawa, Bardhan & Cohen (1975) suggest the 
inclusion of higher powers of u in the expansion of 
exp (iK. u) for observing the direct effect of tem- 
perature factors, common to all contributions of 
diffuse scattering. This is not strictly true [see equation 
(7)] as 82 terms due to thermal vibrations suffice to 
produce the above mentioned effect and higher 
powers are not in general required, u 2 terms included 
in the present formalism correspond to static distor- 
tions and they are expected to yield information about 
the strongly distorted neighbourhood around the core 
of the SRO domain/cluster. 

We should also note a basic difference between 
static and dynamic Debye-Waller (DW) factors. 
Static distortions attenuate atomic form factors only 
near fundamental reflections and do not modify scat- 
tering elsewhere in the reciprocal space (Khanna, 
1984). On the other hand, the dynamic DW factor, 
in addition to affecting Bragg peaks, attenuates diffuse 
scattering from other sources as well. This result has 
an important implication. According to (7) the experi- 
mental diffuse scattering data have to be weighted 
by the thermal DW factor exp [-tOk(Q)]. Since it is 
rather difficult to calculate exp [-tOk(Q)] accurately, 
Bardhan & Cohen (1976) employed the ratio 
I(100)/I(300) (for f.c.c, crystals) to obtain 
exp [-2to(Q)]. Their claim, that the DW factor thus 
obtained contains both static and dynamic contribu- 
tions, is however not correct. I(100)/I(300), the ratio 
of scattered intensity at superlattice reflections, con- 
tains only dynamic contributions and yields the cor- 
rect DW factor needed to reduce the experimental 
diffuse scattering data. 
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Abstract 

An iteration method is presented for calculation of 
the gross physical properties of polycrystals in terms 
of the physical properties of the crystals. No assump- 
tions are made concerning the shape or behaviour of 
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the crystallites. The only mathematical condition to 
be fulfilled is that the product of the matrix of a gross 
physical property with its inverse must give a unit 
matrix if the same is valid for the crystals. The method 
is demonstrated by the calculation of the effective 
elastic tensor of a hypothetical texturized polycrystal 
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consisting of Cu crystallites. The calculated upper 
and lower bounds of the Young modulus are 
extremely close to each other. 

The inverse relation is 

=/3- '  f'. (5) 

Introduction 

Let P denote the matrix representation of a physical 
property of a single crystal. We are concerned with 
properties for which 

PP-1= P-IP= I (1) 

where p - i  is the inverse of matrix P and I denotes 
the unit matrix. 

A polycrystalline material consists of a great num- 
ber of crystallites with orientation g. g is defined by 
the rotation which transforms the coordinate system 
KA fixed to the polycrystalline material into system 
Ks fixed to a crystallite (Fig. 1). The basic domain 
of orientations, containing only one of the symmetri- 
cally equivalent orientations, will henceforth be 
denoted by G. 

The distribution of orientations is described by the 
density function f(g) defined by (Bunge, 1969, p. 26) 

AV(g)/V=f(g)dg (2) 

where A V(g) is the volume of all crystallites having 
orientations in the range dg around g and V means 
the volume of the polycrystal, f(g) is generally deter- 
mined from the measured pole figures in an indirect 
way using the series expansion method of Bunge 
(1969). In our work we use a hypothetical function 
f(g) abstracted from a number of functions actually 
determined by Matthies & Vinci (1983). A standard 
model function f(g) would be useful in the future to 
compare different calculation methods of gross phy- 
sical properties. 

The matrix of the physical property of the polycrys- 
tal corresponding to P of the crystallites is denoted 
by P. In the case of fulfilment of relation (1) an 
analogous relation is required of the corresponding 
gross properties, i.e. 

/3/3-, =/3-1/3 = i. (3) 

/3 relates the gross physical properties X and Y" by 
the linear relation 

(4) 

×A/KA 

Fig. 1. Coordinate systems K A and KB fixed to the polycrystal 
and a crystallite, respectively. 

The model 

The problem is the determination of the gross matrices 
P and /3-1 of a polycrystalline aggregate in terms of 
the matrices P and P-1 of the constituent crystallites. 
We are looking for solutions under the assumption 
that P depends on the orientation of the crystallite 
only, i.e. 

P=P(g). (6) 

The mean of the matrices P(g) is defined by 

P= V-' ~ P(g) d V. (7) 

The integration can be performed in two steps: first 
over all volume elements with orientation g and then 
over all orientations (Bunge, 1969, p. 178): 

P=V-I ~ P(g) ~ dV. (8) 
G V(g )  

With the help of definition (2) 

P= S P(g)f(g) dg. (9) 
G 

Analogously 

p-l= I p-l(g)f(g) dg. (10) 
G 

Generally t5 and p- i  do not fulfil the condition (3), 
and consequently/5 and p- i  are not solutions of the 
problem. To find the correct solutions let us write the 
inverse relation (5) in the form 

/3-1 ~,,= p-,(g)p(g)~ (11) 

and multiply the definition (4) by p-l(g), 
p-l(g) ~,,= p-i(g)/3~. (12) 

The sum of these two equations is 

[/5-1+ p- , (g)])7 ,= p-l(g)[p(g)+/3].,~ (13) 

from which 

~,=[/3-1+ p-,(g)]-,p-i(g)[p(g)+ /3]~. (14) 

A comparison with definition (4) gives 

/5=[ /5-1+ p-,(g)]-lp-,(g)[p(g)+/35]. (15) 

On the other hand, if we write definition (4) in the 
form 

Pf(= P(g)P-'(g) ~" (16) 

and multiply the inverse relation (5) by P(g), 

P(g)f(= P(g)/3-' Y', (17) 

then upon taking the sum of (16) and (17) we get 

1~=[ /3+  P(g)]-~P(g)[P-~(g)+/3-~]Y. (18) 
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A comparison with the inverse relation (5) leads to 

13-'=[P+ P(g)]- 'P(g)[p-I(g)+ p-1]. (19) 

We take into account all crystallites by taking the 
average of both sides of (15) and (19)" 

/3 = ~ [/3-1 + p - l ( g ) ] - l p - l ( g ) [  p(g) +/3if(g) dg 

(20) 

/3- i= ~ [/3+ p(g)]- lp(g)[p-l(g)+/3-1]f(g)  dg. 
G 

(21) 

The required /5 and 13-1 are the limit values of the 
following series 

jS(N+I) = ~ [j~-1(N)+ p- l (g ) ] - lp - l (g )  
G 

x [P(g)  +/3(N)]f(g) dg (22) 

/5-1(N+t) = ~ [/3(N)+ p ( g ) ] - l p ( g )  
G 

x [ p - l ( g )  + ~-l(N)]f(g) dg. (23) 

Thus, knowing the matrices P(g) and p-l(g)  and the 
distribution of crystallite orientations described by 
f/~gl) we can calculate the effective matrices P and 

- of the polycrystalline material by successive 
approximation. The initial functions /3(0) and /3-1(o) 
are chosen to be the mean values /3 and p-1 
calculated from (9) and (10), respectively, i.e. 

/3(0)=/3 (24) 

and 

/3-1(o)= p-1. (25) 

Elasticity of crystallites 

We shall apply the model to the calculation of elastic 
tensors of polycrystals. First we must control the 
relation (1). 

For small deformations the stresses tr 0 depend 
linearly on the strains ek~ (Hooke's law): 

O'ij = CijklEkl (i,j, k, 1 = 1, 2, 3). (26) 

The matrix C of elastic coefficients %kt is 9 X 9, relat- 
ing the nine elements o" 0 to the nine elements ekl. The 
inverse relation reads 

em, = s,,,,,opO'op (m, n, o, p = 1, 2, 3). (27) 

We denote the 9 x 9 matrix with the elements Sm,op 
by S. 

The product of the matrices C and S is not an 
ordinary unit matr ix / ,  but 

C S  = S C  = U ( 28 )  

with the elements 

1.lijij = 1 
1 

Uijij = 

( i = j )  (29) 

( i # j )  (30) 

and the other elements which are not symmetrically 
equivalent to the ones above are zeros. U can be 
considered as a definition of a special unit matrix, 
limited to the 9 x 9  representation of elastic 
coefficients. Whenever it is multiplied into a complete 
matrix with the symmetries peculiar to elasticity, it 
has the same effect as a proper unit matrix (Hirth & 
Lothe, 1968, p. 403). Thus, if we use the 9 x9  rep- 
resentation of the elastic coefficients the matrix U 
plays the role of ! in the preceding sections. 

Calculations 

We applied the model to the calculation of the 
effective elastic tensor of a polycrystal consisting of 
Cu crystallites. The elastic constants for Cu crystals 
on the basis of data given by Hirth & Lothe (1968, 
p. 762) in units of 1013 Pa are (i ~j, i,j = 1, 2, 3) 

c,, = 1.684 c,jj= 1.214 c00=0.754. (31) 

The elastic compliances in units of 10 -13 Pa -~ are 

s , ,  = 1.498 s,jj = -0.629 soo = 0.332. (32) 

The distribution of orientations of the Cu crystallites 
was chosen according to the model function f (g)  
(Fig. 2) constructed by Matthies & Vine (1983) often 
used for examinations of theoretical problems in tex- 
ture analysis (e.g. Esling, Bunge, Philippe & Muller, 
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Fig. 2. Three-dimensional orientation density function f(g) rep- 
resented by its two-dimensional sections. (Courtesy of Professor 
S. Matthies.) 
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Table 1. Results for  the example discussed in the text 

ijkl 

N Coefficient 1111 2222 3333 1122 1133 2233 1212 1313 2323 
~(o): A 

Cijkt 2•149 2"161 2.132 0"968 0-997 0-985 0"525 0"537 0"508 
0 /~-.o). a • Sokt 0-845 0"828 0"869 --0"282 --0"323 --0"306 0-655 0"638 0-679 

~(o) (/~(o>/~-t(o)= ~(o)) 
qkl 1•221 1"215 1-229 -0-110 -0-124 -0.118 0.688 0.685 0.690 

al~(1) : .=A(I ) 
'.~jkt 2"047 2"059 2"029 1 "022 1 "052 1 "040 0.448 0"459 0.433 

1 ~--1(1). -a(l) 
• Sokt 0"743 0"731 0-761 --0"237 --0•267 --0"255 0-560 0-546 0.579 

u'(l)ijkl (~l~(l)j~-l(l) = U(I)) 0"998 0"998 0"998 --0"006 --0"007 --0"006 0"502 0"501 0"501 

1987). The function is represented b.y its two- 
dimensional sections in the shape of Eule'rian angles 
~Ol, ~b, ~o2 (Bunge, 1969). 

For the calculations the basic domain G of the 
Eulerian space was divided into cells with za¢~ = A4~ = 

A A A~2 = 5 °. The transformed values Cgh,,, and Sgh,,, were 
calculated according to 

A 
C ghmn = aigajhakmalnc qBkl (33) 

where the superscripts A and B refer to the coordinate 
B B systems KA and Ks, respectively, and Cok~ and Sokt 

are the values listed in (31) and (32), respectively, ajh 
means the direction cosines of the j th axis of Ks with 

A A respect to the hth axis of KA. Cghmn a n d  Sghm n are 
the components of matrices P(g)  and p - l ( g ) ,  respec- 
tively. 

Results 

The function f ( g )  possesses an orthorhombic sample 
symmetry. Table 1 therefore contains the nine 
independent constants only. The product 

/ 3 ( N ) / 3 - 1  (N)  = u ( N )  ( 3 4 )  

for N = 0 differs considerably from the unit matrix 

1.6 

1.5 

l.Z, 

13 

1.2 

1.1 

1.0 

Young modulus 

x 70 'J Pa i 

fS,° ' / / -  . . . . .  

. ~  ' 

I 

O" 4 1 5 "  - - 9 0 "  

angle to axis X A 

Fig. 3. The Young modulus for a polycrystal consisting of Cu 
crystallites with the orientation density function f(g). The zero 
approximations /5(0) and/5-1(0) are equivalent to the Voigt and 
Reuss bounds, respectively. After one iteration step (30min 
CPU, IBM 360) the new bounds are very close• 

(29), (30). Already one iteration step leads to such 
satisfying results that further iteration is practically 
unnecessary. 

Fig. 3 shows the anisotropy of the Young modulus 
in the (XA,  YA) plane of the polycrystal calculated 
from /3(o), /3--1(0), /3(1) and /3-1(1). The difference 
between the Young moduli derived from /3(1) and 
/3-1(1) is approximately a constant value of 2.2x 
10 l° Pa. 

Discussion 

/3(0) corresponds to the Voigt (1928) approximation 
which is appropriate for a polycrystal in which the 
grains have the same state of strain. /3-1(o) corre- 
sponds to the Reuss (1929) approximation with the 
assumption that the grains have the same stress. The 
advantage of the Voigt and Reuss treatment is that 
they do not make any assumptions concerning crystal 
behaviour or shape. This advantage was also retained 
by Hashin & Shtrikman (1962) using a variational 
method for the derivation of new lower and upper 
bounds for the effective elastic moduli. The bounds 
obtained by Bunge (1974) are also closer than the 
Voigt and Reuss bounds. Bunge's approximation is 
based on the assumption of minimum elastic energy 
under the condition of constant mean strains or 
stresses. 

Our model belongs also to those in which no 
assumptions concerning shape or behaviour of the 
crystals are involved, but the fulfilling of the condition 
(3) established by Alexandrow & Aisenberg (1966) 
was aimed at. The resulting two bounds are already 
extremely close to each other after one iteration step. 

The author is grateful to Dr P. Gad6 and to Director 
T. Fodor for their support as well as to A. Mesk6 
and Gy. Sz6116sy who provided the computer facilities 
at the Hungarian Aluminium Corporation. Thanks 
are due to Professor S. Matthiesfor the function f (g) .  
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Abstract 

An exact expression is derived for the conditional 
probability density function of a three-phase invariant 
and the general result is applied to the space group 
P 1. The expression for the conditional density is given 
in terms of a sixfold Fourier series. A straightforward 
numerical evaluation of this series, without further 
analysis, is extremely time consuming. Much of the 
present paper is therefore devoted to an exposition 
of symmetries hidden in the various summations. The 
computational effort required for the evaluation of 
the above expression is thereby reduced to manage- 
able proportions in a number of interesting cases. 
Results of numerical computations of the exact condi- 
tional density are given in the second paper in this 
series. It is also shown that the exact expression for 
the conditional probability reduces to that given by 
Cochran [Acta Cryst. (1955), 8, 473-478]. 

Introduction 

Current approaches to phase determination by direct 
methods are based on the use of linear combinations 
of phases invariant under a shift of the origin of the 
unit cell. Such combinations are generally termed 
structure invariants (Hauptman & Karle, 1953). Of 
these, one of the most extensively used is the so-called 
three-phase structure invariant associated with the 
product of the three normalized structure factors Eh, 
E k and E_h_k, i.e. 

-" ~0h "t- ~)k'~- ~0-h- k. (1) 

In order to use the three-phase invariant for structure 
determination one needs to know the conditional 
probability density function (c.p.d.f.) of qb, where the 

conditioning is on the values [Eh[, tEd and [E-h--k[- 
An approximate form of this c.p.d.f., based on the 
central limit theorem, was first derived by Cochran 
(1955). Corrections to this result were subsequently 
calculated by a number of investigators in terms of 
Gram-Charlier, Edgeworth, or exponentiated series 
[e.g. Naya, Nitta & Oda (1965); Hauptman (1971); 
Karle (1972); Karle & Gilardi (1973); Giacovazzo 
(1974); Peschar & Schenk (1986); a rich source of 
references is the book by Giacovazzo (1980)]. As in 
the above studies we shall assume that the primitive 
random variables of the problem are the atomic co- 
ordinates, which vary independently and uniformly 
over the (0, 1) range. However, none of the approxi- 
mate c.p.d.f.'s have been compared with exact results 
to assess their accuracy. Such an assessment is the 
motivation for the present study. 

We have recently developed methods, not involving 
the approximations based on the central limit 
theorem, for calculating exact representations of 
p.d.f.'s useful in crystallographic applications (e.g. 
Shmueli, Weiss, Kiefer & Wilsop, 1984; Shmueli & 
Weiss, 1985, 1986). Some of the problems considered 
include that of finding exact representations of the 
p.d.f.'s for IE] in various space groups as well as for 
joint p.d.f.'s for E from which exact Y~I and ~2 
relationships can be recovered. In the present two 
papers we present some analogous results for the 
p.d.f, of the three-phase invariant q~ relevant to the 
solution of the phase problem in non-centrosym- 
metric structures. As in the above studies we shall 
assume that the primitive random variables of the 
problem are the atomic coordinates which, in the 
space group P1, vary independently and uniformly 
over the (0, 1) range. 
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